TS. PHÙNG VĂN PHÚC

TS. PHÙNG VĂN PHÚC 3

LÝ LỊCH SƠ LƯỢC

Họ và tên: PHÙNG VĂN PHÚC
Năm sinh: 1986 
Học vị: Tiến sĩ
Năm, nước nhận học vị: 2016, Bỉ
Google scholar: https://scholar.google.com.vn/citations?user=fOPiziAAAAAJ&hl=en
Liên hệ: pv.phuc86@hutech.edu.vn

QUÁ TRÌNH ĐÀO TẠO

Đại học
Nơi đào tạo: Trường Đại học Sư Phạm Kỹ Thuật Tp. HCM
Ngành học: Cơ tin kỹ thuật            
Năm tốt nghiệp: 2009

Sau đại học
Thạc sĩ chuyên ngành: Cơ học kỹ thuật
Năm cấp bằng: 2012
Nơi đào tạo: Trường Đại học Sư Phạm Kỹ Thuật Tp. HCM

Tiến sĩ chuyên ngành: Cơ học tính toán                                      
Năm cấp bằng: 2016
Nơi đào tạo: Đại học Ghent, Vương quốc Bỉ
Tên luận án: Isogeometric analysis for smart plate structures

ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CÁC CẤP 

TTTên đề tài nghiên cứu Năm bắt đầu/Năm hoàn thànhĐề tài cấp (NN, Bộ, ngành, trường)Trách nhiệm tham gia trong đề tài
1Phân tích áp điện-áp điện từ cho kết cấu micro/nano flexo2024 - 2026
Cấp nhà nước (Nafosted)Chủ nhiệm đề tài
2Tối ưu hóa tính toán kết cấu nano xốp2019 - 2021Cấp nhà nước (Nafosted)Chủ nhiệm đề tài
3Nghiên cứu và phát triển phương pháp phần tử hữu hạn trơn cho mô hình và mô phỏng các bài toán tương tác trong môi trường đa vật lý2010 - 2012Cấp nhà nước (Nafosted)Nghiên cứu viên chính
4Phát triển phương pháp phần tử hữu hạn trơn cho bài toán tương tác rắn lỏng2010 - 2012Cấp trườngChủ nhiệm đề tài

CÔNG BỐ KHOA HỌC 

TTTên công trình, tên tạp chí, năm công bố
2.1 Trị số khoa học:
- Theo google scholar: h-index: 43, trích dẫn: 4528 (cập nhật 04/07/2024)
https://scholar.google.com.vn/citations?user=fOPiziAAAAAJ&hl=en
- Theo Scopus: h-index: 41, trích dẫn: 4080
http://www.scopus.com/authid/detail.url?authorId=55181714100
2.2 Giải thưởng, thành tựu khoa học
- Giải thưởng tài năng Cơ học trẻ Nguyễn Văn Đạo, 2024
- 2 năm liền “Best Rising Stars of Science in the World”, 2022 - 2023
- 2 năm liền top 1% thế giới chuyên ngành “Mechanical and Aerospace Engineering”, 2022 - 2023
- Giải thưởng bài báo xuất xắc nhất “EABE Best Paper Awards 2023” dành cho các bài báo xuất sắc có tác động khoa học nhất trong vòng ba năm 2020-2022
- 5 năm liền top 100.000 nhà khoa học ảnh hưởng nhất thế giới, 2019-2023
- Top 1% chuyên gia bình duyệt thế giới, 2018 - 2019
2.3 Sách
1Nguyen-Xuan Hung, Phung-Van Phuc, Timon Rabczuk. Proceedings of the International Conference on Advances in Computational Mechanics 2017. Lecture Notes in Mechanical Engineering, Springer Singapore, 2018.
http://www.springer.com/br/book/9789811071485
2.4 Bài báo thuộc danh mục ISI (Web of Science)
74P. Phung-Van, PT. Hung, CH. Thai. Small-dependent nonlinear analysis of functionally graded triply periodic minimal surface nanoplates. Composite Structures 2024; 335, 117986 (Q1, IF: 6.3)
https://www.sciencedirect.com/science/article/abs/pii/S0263822324001144
73P. Phung-Van, H. Nguyen-Xuan, PT. Hung, M. Abdel-Wahab, CH. Thai. Nonlocal strain gradient analysis of honeycomb sandwich nanoscale plates. Thin-Walled Structures 2024; 198, 111746 (Q1, IF: 6.4)
https://www.sciencedirect.com/science/article/abs/pii/S0263823124001897
72PT. Hung, H. Nguyen-Xuan, P. Phung-Van, CH. Thai. Modified strain gradient analysis of the functionally graded triply periodic minimal surface microplate using isogeometric approach. Engineering with Computers 2024 (Q1, IF: 8.7)
https://link.springer.com/article/10.1007/s00366-023-01942-4
71CH. Thai, PT. Hung, H. Nguyen-Xuan, P. Phung-Van. A free vibration analysis of carbon nanotube reinforced magneto-electro-elastic nanoplates using nonlocal strain gradient theory. Finite Elements in Analysis and Design 2024; 236, 104154 (Q1, IF: 3.5)
https://www.sciencedirect.com/science/article/abs/pii/S0168874X24000489?dgcid=rss_sd_all
70PT. Hung, CH. Thai, P. Phung-Van. Isogeometric free vibration of functionally graded porous magneto-electro-elastic plate reinforced with graphene platelets resting on an elastic foundation. Computers & Mathematics with Applications 2024; 169, 68-87 (Q1, IF: 2.9)
https://www.sciencedirect.com/science/article/abs/pii/S0898122124002736
69PT. Hung, CH. Thai, P. Phung-Van. Isogeometric free vibration of honeycomb sandwich microplates with the graphene nanoplatelets reinforcement face sheets. Engineering Structures 2024; 305, 117670 (Q1, IF: 5.6)
https://www.sciencedirect.com/science/article/abs/pii/S0141029624002323
68P. Phung-Van, LB. Nguyen, PT. Hung, H. Nguyen-Xuan, CH Thai. Nonlocal nonlinear analysis of functionally graded piezoelectric porous nanoplates. International Journal of Mechanics and Materials in Design 2024 (Q2, IF: 2.7)
https://link.springer.com/article/10.1007/s10999-023-09701-5
67P. Phung-Van, H. Nguyen-Xuan, PT. Hung, CH. Thai. Nonlinear isogeometric analysis of magneto-electro-elastic porous nanoplates. Applied Mathematical Modelling 2024; 128, 331-346 (Q1, IF: 5.0)
https://www.sciencedirect.com/science/article/pii/S0307904X24000180
66P. Phung-Van, PT. Hung, H. Nguyen-Xuan, CH. Thai. Small scale analysis of porosity-dependent functionally graded triply periodic minimal surface nanoplates using nonlocal strain gradient theory. Applied Mathematical Modelling 2024; 127, 439-453 (Q1, IF: 5.0)
https://www.sciencedirect.com/science/article/pii/S0307904X23005528
65CH. Thai, PT. Hung, H. Nguyen-Xuan, P. Phung-Van. A meshfree method for functionally graded triply periodic minimal surface plates. Composite Structures 2024; 117913 (Q1, IF: 6.3)
https://www.sciencedirect.com/science/article/pii/S0263822324000412
64PT. Hung, CH. Thai, P. Phung-Van. Isogeometric bending and free vibration analyses of carbon nanotube-reinforced magneto-electric-elastic microplates using a four variable refined plate theory. Computers & Structures 2023; 287, 107121 (Q1, IF: 4.7)
https://www.sciencedirect.com/science/article/pii/S0045794923001517
63PT. Hung, CH. Thai, P. Phung-Van. A C0-HSDT free vibration of magneto-electro-elastic functionally graded porous plates using a moving Kriging meshfree method. Aerospace Science and Technology 2023; 137, 108266 (Q1, IF: 5.457)
https://www.sciencedirect.com/science/article/pii/S1270963823001633
62PT. Hung, P. Phung-Van, CH. Thai. Small scale thermal analysis of piezoelectric–piezomagnetic FG microplates using modified strain gradient theory. International Journal of Mechanics and Materials in Design 2023; 1-23 (Q2, IF: 3.561)
https://link.springer.com/article/10.1007/s10999-023-09651-y
61LB. Nguyen, H. Nguyen-Xuan, CH. Thai, P. Phung-Van. A size-dependent effect of smart functionally graded piezoelectric porous nanoscale plates. International Journal of Mechanics and Materials in Design 2023; 1-14 (Q2, IF: 3.561)
https://link.springer.com/article/10.1007/s10999-023-09660-x
60CH. Thai, AMJ. Fereira, H. Nguyen-Xuan, PT. Hung, P. Phung-Van. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Composite Structures 2023; 316, 117005 (Q1, IF: 6.603)
https://www.sciencedirect.com/science/article/abs/pii/S0263822323003495
59NV. Nguyen, KQ. Tran, P. Phung-Van, J. Lee, H. Nguyen-Xuan. An isogeometric analysis of functionally graded triply periodic minimal surface microplates. Aerospace Science and Technology 2023; 137, 108270 (Q1, IF: 5.457)
https://www.sciencedirect.com/science/article/abs/pii/S1270963823001670
58P. Phung-Van, Chien H. Thai. A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-021-01353-3
57Chien H. Thai, H. Nguyen-Xuan, P. Phung-Van. Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-022-01689-4
56PT Hung, Chien H. Thai, P. Phung-Van. NURBS-based refined plate theory for metal foam plates with porosities. Thin-Walled Structures 2022; 175:109246 (Q1, IF: 5.881)
https://www.sciencedirect.com/science/article/pii/S0263823122001975
55PT Hung, Chien H. Thai, P. Phung-Van. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Composite Structures 2022; 289:115467 (Q1, IF: 7.963)
https://www.sciencedirect.com/science/article/pii/S0263822322002604
54Chien H. Thai, H. Nguyen-Xuan, P. Phung-Van. A size-dependent isogeometric analysis of laminated composite plates based on the nonlocal strain gradient theory. Engineering with Computers 2022; (Q1, IF: 7.555)
https://link.springer.com/article/10.1007/s00366-021-01559-5
53P. Phung-Van, Chien H. Thai. A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Engineering with Computers 2021; (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01353-3
52P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, Chien H. Thai. Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with various porosity distributions. Composite Structures 2021; 268:113949 (Q1, IF: 5.407)
https://www.sciencedirect.com/science/article/abs/pii/S0263822321004098
51P. Phung-Van, QX. Lieu, AJM. Ferreira, Chien H. Thai. A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates. Thin-Walled Structures 2021; 164:107862 (Q1, IF: 4.442)
https://www.sciencedirect.com/science/article/abs/pii/S0263823121002664
50CH. Thai, AJM. Ferreira, H. Nguyen-Xuan, P. Phung-Van. A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory. Composite Structures 2021; 272:114169 (Q1, IF: 5.138)
https://www.sciencedirect.com/science/article/abs/pii/S0263822321006310
49            CH. Thai, AJM. Ferreira, H. Nguyen-Xuan, LB. Nguyen, P. Phung-Van. A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach. Engineering with Computers 2021 (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01501-9
48P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, CH. Thai. A nonlocal strain gradient isogeometric nonlinear analysis of nanoporous metal foam plates. Engineering Analysis with Boundary Elements 2021; 130:58-68 (Q1, IF: 2.964)
https://www.sciencedirect.com/science/article/abs/pii/S0955799721001314
47CH. Thai, H. Nguyen-Xuan, LB. Nguyen, P. Phung-Van. A modified strain gradient meshfree approach for functionally graded microplates. Engineering with Computers 2021 (Q1, IF: 7.963)
https://link.springer.com/article/10.1007/s00366-021-01493-6
46CH. Thai, LB. Nguyen, H. Nguyen-Xuan, P. Phung-Van. Size-dependent nonlocal strain gradient modeling of hexagonal beryllium crystal nanoplates. International Journal of Mechanics and Materials in Design 2021; 1-15 (Q1, IF: 4.011)
https://link.springer.com/article/10.1007/s10999-021-09561-x 
45P. Phung-Van, AJM. Ferreira, Chien H. Thai. Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates. Composite Structures 2020; 239:112029 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S0263822319339650
44Chien H. Thai, AJM. Ferreira, P. Phung-Van. A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates. Composite Structures 2020; 251:112634 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S026382232030934X
43P. Phung-Van, Chien H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan. Optimal design of FG sandwich nanoplates using size-dependent isogeometric analysis. Mechanics of Materials 2020; 143:103277 (Q1, IF: 2.958)
https://www.sciencedirect.com/science/article/pii/S0167663619305320
42            CH Thai, AJM. Ferreira, P Phung-Van. Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Engineering Analysis with Boundary Elements 2020; 117:284-298 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720301272
41CH Thai, P Phung-Van. A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures. Engineering Analysis with Boundary Elements 2020; 117:346-358 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720301028
40CH Thai, TD Tran, P Phung-Van. A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Engineering Analysis with Boundary Elements 2020; 115:52-63 (Q1, IF: 2.243)
https://www.sciencedirect.com/science/article/pii/S0955799720300461
39Chien H. Thai, AJM. Ferreira, TD. Tran, P. Phung-Van. A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Composite Structures 2020; 234: 111695 (Q1, IF: 4.823)
https://www.sciencedirect.com/science/article/pii/S0263822319330661
38P. Phung-Van, Chien H. Thai, AJM. Ferreira, T. Rabczuk. Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin-Walled Structures 2020; 148: 106497 (Q1, IF: 3.488)
https://www.sciencedirect.com/science/article/pii/S0263823119302757
37P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Composites Part B: Engineering 2019; 164:215-225 (Q1, IF: 6.864)
https://www.sciencedirect.com/science/article/pii/S1359836818324132
36P. Phung-Van, CH. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. An isogeometric approach of static and free vibration analyses for porous FG nanoplates. European Journal of Mechanics-A/Solids 2019; 78: 103851 (Q1, IF: 2.931)
https://www.sciencedirect.com/science/article/pii/S0997753818306296
35CH. Thai, AJM. Ferreira, P. Phung-Van. Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Composites Part B: Engineering 2019; 169:174-188 (Q1, IF: 6.864)
https://www.sciencedirect.com/science/article/pii/S1359836818342203
34CH. Thai, AJM. Ferreira, TD. Tran, P. Phung-Van. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Composite Structures 2019; 220:749-759 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S0263822318347135
33H. Nguyen-Ngoc, P. Phung-Van, BL. Dang, H. Nguyen-Xuan, MA Wahab. Static and dynamic analyses of three-dimensional hollow concrete block revetments using polyhedral finite element method. Applied Ocean Research 2019; 88:15-28 (Q1, IF: 2.436)
https://www.sciencedirect.com/science/article/pii/S0141118718306989
32P. Phung-Van, Cuong-Le Thanh, H. Nguyen-Xuan, M. Abdel-Wahab. Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Composite Structures 2018; 201:882-892 (Q1, IF: 4.829)
https://www.sciencedirect.com/science/article/pii/S026382231830936X
31T. Vu-Huu, P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. A polytree-based adaptive polygonal finite element method for topology optimization of fluid-submerged breakwater interaction. Computers and Mathematics with Applications 2018; 76(5):1198-1218 (Q1, IF: 2.811)
https://www.sciencedirect.com/science/article/pii/S0898122118303328
30Cuong-Le Thanh, P. Phung-Van, Chien H. Thai, H. Nguyen-Xuan, M. Abdel-Wahab. Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Composite Structures 2018; 184:633-649 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822317324601
29P. Phung-Van, AJM. Ferreira, H. Nguyen-Xuan, M. Abdel-Wahab. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Composites Part B: Engineering 2017; 118:125-134 (Q1, IF: 6.864)
http://www.sciencedirect.com/science/article/pii/S1359836817302524
28P. Phung-Van, Qui X. Lieu, H. Nguyen-Xuan, M. Abdel-Wahab. Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Composite Structures 2017; 166:120-135 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822316324151
27P. Phung-Van, Loc V. Tran, AJM. Ferreira, H. Nguyen-Xuan, M. Abdel-Wahab. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dynamics 2017; 87:879-894 (Q1, IF: 4.604)
http://link.springer.com/article/10.1007/s11071-016-3085-6
26Loc V. Tran, P. Phung-Van, J. Lee, M. Abdel-Wahab, H. Nguyen-Xuan. Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates. Composite Structures 2016; 140:655-667 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822316000131
25S. Nguyen-Hoang, P. Phung-Van, S. Natarajan, HG. Kim. A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Engineering with Computers 2016; 32:267-284 (Q1, IF: 3.551)
http://link.springer.com/article/10.1007/s00366-015-0416-z
24P. Phung-Van, LB. Nguyen, Loc V. Tran, TD. Dinh, Chien H. Thai, SPA. Bordas, M. Abdel-Wahab, H. Nguyen-Xuan. An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. International Journal of Non-Linear Mechanics 2015; 76:190-202 (Q1, IF: 2.225)
http://www.sciencedirect.com/science/article/pii/S0020746215001134
23P. Phung-Van, M. Abdel-Wahab, KM. Liew, SPA. Bordas, H. Nguyen-Xuan. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures 2015; 123:137-149 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822314006771
22P. Phung-Van, L. De Lorenzis, Chien H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan. Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Computational Materials Science 2015; 96:495-505 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025614003243
21P. Phung-Van, T. Nguyen-Thoi, T. Bui-Xuan, Q. Lieu-Xuan. A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Computational Materials Science 2015; 96:549-558 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025614002857
20T. Nguyen-Thoi, P. Phung-Van, MH. Nguyen-Thoi, H. Dang-Trung. An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming. Journal of Computational and Applied Mathematics 2015; 281:32-48 (Q2, IF: 1.883)
http://www.sciencedirect.com/science/article/pii/S0377042714005470
19T. Nguyen-Thoi, P. Phung-Van, V. Ho-Huu, L. Le-Anh. An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D Fluid-Solid interaction problems. KSCE Journal of Civil Engineering 2015; 19:641-650 (Q2, IF: 1.428)
http://link.springer.com/article/10.1007/s12205-015-0293-4
18P. Phung-Van, T. Nguyen-Thoi, H. Luong-Van, Q. Lieu-Xuan. Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0–HSDT. Computer Methods in Applied Mechanics and Engineering 2014; 270: 15–36 (Q1, IF: 4.821)
http://www.sciencedirect.com/science/article/pii/S0045782513003277
17P. Phung-Van, T. Nguyen-Thoi, H. Luong-Van, C. Thai-Hoang, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Computer Methods in Applied Mechanics and Engineering 2014; 272: 138-159 (Q1, IF: 4.821)
http://www.sciencedirect.com/science/article/pii/S0045782514000140
16P. Phung-Van, Chien. H. Thai, T. Nguyen-Thoi, H. Nguyen-Xuan. Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Composites part B - Engineering 2014; 60: 227-238 (Q1, IF: 6.864)
http://www.sciencedirect.com/science/article/pii/S1359836813007749
15P. Phung-Van, T. Nguyen-Thoi, H. Dang-Trung, N. Nguyen-Minh. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C0-type higher-order shear deformation for static and free vibration analyses of sandwich and composite plates. Composite Structures 2014; 111: 553-565 (Q1, IF: 4.829)
http://www.sciencedirect.com/science/article/pii/S0263822314000518
14P. Phung-Van, H. Luong-Van, T. Nguyen-Thoi, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. International Journal for Numerical Methods in Engineering 2014; 98: 988-1014 (Q1, IF: 2.746)
http://onlinelibrary.wiley.com/doi/10.1002/nme.4662/full
13H. Luong-van, T. Nguyen-Thoi, GR. Liu, P. Phung-Van. A cell-based smoothed finite element method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation. Engineering Analysis with Boundary Elements 2014; 42: 8-19 (Q1, IF: 2.243)
http://www.sciencedirect.com/science/article/pii/S0955799713002439
12T. Nguyen-Thoi, P. Phung-Van, S. Nguyen-Hoang, Q. Lieu-Xuan. A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid-solid interaction problems. Applied Mathematics and Computation 2014; 232: 324-346 (Q1, IF: 3.092)
http://www.sciencedirect.com/science/article/pii/S0096300314000897
11T. Nguyen-Thoi, T. Rabczuk, T. Lam-Phat, V. Ho-Huu, P. Phung-Van. Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theoretical and Applied Fracture Mechanics 2014; 72:150-163 (Q1, IF: 2.848) http://www.sciencedirect.com/science/article/pii/S016784421400041X
10T. Nguyen-Thoi, P. Phung-Van, S. Nguyen-Hoang, Q. Lieu-Xuan. A coupled alpha-FEM for dynamic analyses of 2D fluid-solid interaction problems. Journal of Computational and Applied Mathematics 2014; 271:130-049 (Q2, IF: 1.883)
http://www.sciencedirect.com/science/article/pii/S037704271400185X
9T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, S. Nguyen-Hoang, H. Nguyen-Xuan. An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE Journal of Civil Engineering 2014; 18:1072-1082 (Q2, IF: 1.428)
http://link.springer.com/article/10.1007/s12205-014-0002-8
8P. Phung-Van, T. Nguyen-Thoi, T. Le-Dinh, H. Nguyen-Xuan. Static, free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Materials and Structures 2013; 22: 095026 (Q1, IF: 3.543)
http://iopscience.iop.org/article/10.1088/0964-1726/22/9/095026
7P. Phung-Van, T. Nguyen-Thoi, Loc V. Tran, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates. Computational Materials Science 2013; 79:857-872 (Q1, IF: 2.644)
http://www.sciencedirect.com/science/article/pii/S0927025613003248
6T. Nguyen-Thoi, P. Phung-Van, C. Thai-Hoang, H. Nguyen-Xuan. A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. International Journal of Mechanical Sciences 2013; 74: 32-45 (Q1, IF: 4.134)
http://www.sciencedirect.com/science/article/pii/S002074031300129X
5T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, H. Nguyen-Xuan, P. Ngo-Thanh. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers and Structures 2013; 125: 100-113 (Q1, IF: 3.354)
http://www.sciencedirect.com/science/article/pii/S0045794913001582
4T. Nguyen-Thoi, P. Phung-Van, T. Rabczuk, H. Nguyen-Xuan, C. Le-Van. Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). International Journal of Computational Methods 2013; 10(1): 1340008 (Q2, IF: 1.221)
http://www.worldscientific.com/doi/abs/10.1142/S0219876213400082
3T. Nguyen-Thoi, P. Phung-Van, T. Rabczuk, H. Nguyen-Xuan, C. Le-Van. An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems. International Journal of Computational Methods 2013; 10(1): 1340003 (Q2, IF: 1.221)
http://www.worldscientific.com/doi/abs/10.1142/S0219876213400033
2T. Nguyen-Thoi, P. Phung-Van, H. Luong-Van, H. Nguyen-Van, H. Nguyen-Xuan. A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Computational Mechanics 2013; 51 (1): 65-81 (Q1, IF: 3.159)
http://link.springer.com/article/10.1007/s00466-012-0705-y
1T. Nguyen-Thoi, P. Phung-Van, H. Nguyen-Xuan, C. Thai-Hoang. A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates. International Journal for Numerical Methods in Engineering 2012; 91(7): 705-741 (Q1, IF: 2.746)
http://onlinelibrary.wiley.com/doi/10.1002/nme.4289/abstract
2.5 Bài báo đăng trên tạp chí quốc tế
3PT. Hung, CH. Thai, P. Phung-Van. A moving Kriging meshfree approach for free vibration and buckling analyses of porous metal foam plates. Journal of Micromechanics and Molecular Physics 2023; 8 (01), 45-59
https://www.worldscientific.com/doi/abs/10.1142/S2424913022450011
2CH. Thai, P. Phung-Van, H. Nguyen-Xuan. Buckling analysis of FG GPLRC plate using a naturally stabilized nodal integration meshfree method. Modern Mechanics and Applications 2022; 189-202.
https://link.springer.com/chapter/10.1007/978-981-16-3239-6_15
1T. Nguyen-Thoi, H. Luong-Van, P. Phung-Van, T. Rabczuk, D. Tran-Trung. Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) Method. International Journal of Composite Materials 2013; 3(6A): 19-27
http://article.sapub.org/10.5923.s.cmaterials.201309.03.html
2.6 Bài báo đăng trên tạp chí khoa học quốc gia
6P. Phung-Van, PT. Hung, H. Nguyen-Gia, H. Nguyen-Xuan. Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method. Journal of Advanced Engineering and Computation 2023; 7 (4), 237-246
https://jaec.vn/index.php/JAEC/article/view/441
5PT. Hung, T. Nguyen-Thanh, P. Phung-Van, H. Nguyen-Gia. Isogeometric vibration of the magneto-electro-elastic sandwich plate with functionally graded carbon nanotube reinforced composite core. Journal of Advanced Engineering and Computation 2023; 7 (3), 187-203
https://jaec.vn/index.php/JAEC/article/view/428
4PT. Hung, P. Phung-Van. Isogeometric Buckling Analysis of The Magneto-electro-elastic Foam Plates Resting on An Elastic Foundation. Journal of Advanced Engineering and Computation 2023; 7 (1), 42-56
https://jaec.vn/index.php/JAEC/article/view/398
3Pham Tan Hung, Phung Van Phuc. A Two Variable Refined Plate Theory for Isogeometric Vibration Analysis of The Functionally Graded Piezoelectric Microplates with Porosities. Journal of Advanced Engineering and Computation 2022; 6(4), 291-305
https://jaec.vn/index.php/JAEC/article/view/393
2Phung Van Phuc, Chau Nguyen Khanh, Chau Nguyen Khai, Nguyen Xuan Hung. Free vibration analysis of porous nanoplates using NURBS formulations. Vietnam Journal of Science and Technology 2020; 58(3): 379-389
 http://www.vjs.ac.vn/index.php/jst/article/view/14500
1Nguyen Thoi Trung, Phung Van Phuc, Tran Viet Anh, Nguyen Tran Chan. Dynamic analysis of Mindlin plates on viscoelastic foundations under a moving vehicle by CSMIN3 based on C0- type higher-order shear deformation theory. Vietnam Journal of Mechanics 2014; 36:61– 75.
http://vjs.ac.vn/index.php/vjmech/article/view/2974 
 (Cập nhật tháng 7/2024)


14617998
Các tin khác
DANH SÁCH NHÂN SỰ KHOA XÂY DỰNG Đội ngũ CB-GV-NV Khoa Xây dựng (cập nhật tháng 9/2024)
GS.TS. NGUYỄN TRUNG KIÊN Phó Hiệu trưởng kiêm Trưởng Khoa Xây dựng - Email: ntkien@hutech.edu.vn
TS. TRẦN TUẤN NAM Phó trưởng khoa - Email: tt.nam@hutech.edu.vn
TS. VÕ MINH THIỆN Giảng viên - Email: vm.thien@hutech.edu.vn
TS. LƯƠNG TOÀN HIỆP Giảng viên - Email: lt.hiep@hutech.edu.vn
TS. NGUYỄN VIỆT TUẤN Giảng viên - Email: nv.tuan@hutech.edu.vn
×